«Claro que la matemática pura tiene una validez independiente de la experiencia particular de cada individuo; pero lo mismo puede decirse de todos los hechos establecidos por todas las ciencias, y hasta de todos los hechos en general. Los polos magnéticos, la composición del agua por el oxígeno y el hidrógeno, el hecho de que Hegel ha muerto y el señor Dühring está vivo, son válidos independientemente de mi experiencia o de la de otras personas, y hasta independientemente de la experiencia del señor Dühring en cuanto que éste se duerma con el sueño del justo. Pero lo que no es verdad es que en la matemática pura el entendimiento se ocupe exclusivamente de sus propias creaciones e imaginaciones. Los conceptos de número y figura no han sido tomados sino del mundo real. Los diez dedos con los cuales los hombres han aprendido a contar, a realizar la primera operación aritmética, no son ni mucho menos una libre creación del entendimiento. Para contar hacen falta no sólo objetos contables, enumerables, sino también la capacidad de prescindir, al considerar esos objetos, de todas sus demás cualidades que no sean el número, y esta capacidad es resultado de una larga evolución histórica y de experiencia. También el concepto de figura, igual que el de número, está tomado exclusivamente del mundo externo, y no ha nacido en la cabeza, del pensamiento puro. Tenía que haber cosas que tuvieran figura y cuyas figuras fueran comparadas, antes de que se pudiera llegar al concepto de figura. La matemática pura tiene como objeto las formas especiales y las relaciones cuantitativas del mundo real, es decir, una materia muy real. El hecho de que esa materia aparece en la matemática de un modo sumamente abstracto no puede ocultar sino superficialmente su origen en el mundo externo. Para poder estudiar esas formas y relaciones en toda su pureza hay, empero, que separarlas totalmente de su contenido, poner éste aparte como indiferente; así se consiguen los puntos sin dimensiones, las líneas sin grosor ni anchura, las a y b y las x e y, las constantes y las variables, y se llega al final, efectivamente, a las propias y libres creaciones e imaginaciones del entendimiento, a saber, a las magnitudes imaginarias. Tampoco la aparente derivación de las magnitudes matemáticas unas de otras prueba su origen apriorístico, sino sólo su conexión racional. Antes de que se llegara a la idea de derivar la forma de un cilindro de la revolución de un rectángulo alrededor de uno de sus lados ha habido que estudiar gran número de rectángulos y cilindros reales, aunque de forma muy imperfecta. Como todas las demás ciencias, la matemática ha nacido de las necesidades de los hombres: de la medición de tierras y capacidades de los recipientes, de la medición del tiempo y de la mecánica. Pero, como en todos los ámbitos del pensamiento, al llegar a cierto nivel de evolución se separan del mundo real las leyes abstraídas del mismo, se le contraponen como algo independiente, como leyes que le llegaran de afuera y según las cuales tiene que disponerse el mundo. Así ha ocurrido en la sociedad y en el Estado, y así precisamente se aplica luego al mundo la matemática pura, aunque ha sido tomada sencillamente de ese mundo y no representa más que una parte de las formas de conexión del mismo, única razón por la cual es aplicable». (Friedrich Engels; Anti-Dühring, 1878)
No hay comentarios:
Publicar un comentario
«¡Pedimos que se evite el insulto y el subjetivismo!»